#### Ch 4 Heat and Temperature

#### Physical Science 115



#### Question:

 What is the difference between a hot cup of coffee and a cold cup of coffee?
 Yes, temperature

- But, think small. What else?
- The molecules in the hot cup of coffee are moving faster—they are more energetic.

⇒More <u>thermal energy</u>

#### Internal Energy vs. Temperature

 Internal energy and temperature have to do with kinetic energies of the molecules in substances, but they are different

#### To start with:

- Internal energy is energy measure in joules, calories.
- Temperature is measured in degrees.

#### Temperature

- Measuring hot and cold with our body is subjective.
- A thermometer is a reliable and reproducible way to measure "hotness" and "coldness"



# **Temperature Scales** 100° 100 equal spaced divisions made between reference points—centigrade thermometer 00 00

#### **Temperature Scales**



Which has the largest degrees, a Celsius thermometer or a Fahrenheit thermometer?



## Hot Cherry Pie

- Suppose you order a hot piece of pie.
- Pie comes from freezer  $\Rightarrow 0^0 C$
- What temperature is twice as hot?
- What if pie was 10<sup>o</sup> C?
  What would twice as hot be? No! Not 20<sup>o</sup> C



## Celsius the Village Tailor

- Measure heights of all customers against the stick, which is against the wall.
- No need for stick to extend to ceiling or to floor.
- Stick has 273 notches between bottom and top.
- The distance above the ground, "absolute zero", is also 273 notches.
- All tailors use same method, they can communicate amongst themselves.

## One Day...

- A very short woman, measures zero on scale.
- She has a brother who is twice as tall, how tall is her brother?
- If 0<sup>0</sup> pie is twice as hot, how hot?
- If 10<sup>0</sup> pie is twice as hot, how hot?

#### Absolute Zero

- Temperature has no upper limit.
  solid⇒liquid⇒gas⇒plasma
- Lower limit on temperature is absolute zero.

Absolute zero—The temperature at which no more energy can be removed from a substance. It can't get any colder.



#### Kelvin Temperature Scale

- $K = {}^{\circ}C + 273$
- Absolute zero = 0 K
- No negative numbers on Kelvin scale.

## Internal Energy

• The total energy stored in the atoms and molecules within a substance.

# Compare a giant iceberg to a cup of coffee...



- Which has a higher temperature?
- Which has more internal energy?

#### Internal Energy vs. Temperature

 Internal energy and temperature have to do with kinetic energies of the molecules in substances, but they are different

#### To start with:

- Internal energy is energy measure in joules, calories.
- Temperature is measured in degrees.

#### Heat

- The energy exchange between objects because of temperature difference is called heat.
- "Heat flow" is redundant.

## Calories

 A calorie is the amount of heat required to change the temperature of water by 1 Celsius degree

1 Calorie = 4.18 J

1 "food calorie" = 1000 cal

## 4<sup>th</sup> of July Sparkler

- Temperature =  $2000^{\circ}$ C
- If sparks land on face, the heat received is small.
- High temperature ⇒high energy per moleule.
- High ratio doesn't necessarily correspond to high heat.



#### Comparison: <u>Temp</u>erature, Internal Energy, and Heat

Temperature

Measures average kinetic energy.

Internal Energy The energies associated with motion and position within a substance.

#### Heat

The flow of thermal energy

## **Energy Flow**

When you stick a nail into ice, does cold flow from the ice to your hand, or does thermal energy flow from your hand to the ice?



Answer: Thermal energy flows from your hand to the ice.

#### Thermal Equilibrium

Hot Coffee ⇒ "Cold" Hand

"Warm" Hand ⇒Ice Tea

Heat will flow from a hot object to a cold object until they are the same temperature.

When two objects are at the same temperature they are in thermal equilibrium.



## **Specific Heat Capacity**

- Have you ever noticed that the filling is much hotter than the crust?
- Different substances have different capacities for storing thermal energy.



#### Specific Heat of Water

- Water has a much higher capacity for storing energy than most all other substances.
- It takes more energy to warm the water than to warm the sand.



#### Formula--Specific Heat Capacity

The quantity of heat needed to change a unit mass of the material by a unit amount in temperature.

It is a property of the material.



#### Specific Heat of Water vs. Iron



Same heat is absorbed.

Iron's ability to store heat is less than water's.

Iron's temperature rises more than does the water's.

#### Consider the difference in touching:





An empty iron frying pan that has been placed on a stove for one minute

A frying pan of water that has been on the stove for several minutes.

- Which pan has the higher temperature?
- Which absorbed the greater amount of energy?

## Specific Heat



Variables involved in heating

- Temperature change
- Mass
- Type of material
  - Different materials require different amounts of heat to produce the same temperature change
  - Measure = specific heat

Summarized in one equation

$$Q = mc\Delta T$$

#### Example

A 0.500 kg piece of metal is heated to 200.0°C and then dropped into a beaker containing 0.400 kg of water that is initially at 20.0°C. If the final equilibrium temperature of the mixed system is 22.4°C, find the specific heat of the metal.

#### Heat Transfer

#### Three Types of Thermal Energy Transfer

- 1. Convection
- 2. Conduction
- 3. Radiation



#### Conduction

- **Conduction** moves heat from one particle to the next.
- It is due to collision between atoms.
- Example: when the stove burner heats a pan and its contents.
- Conduction allows the heat to be transferred inside and throughout a material rather than only heating the surface.

## Cold Tile

- Tile floor and wood floor are at the same temperature
- Tile feels colder
- Tile is a better heat conductor
- Thermal energy moves more quickly from your feet.



#### Glass and Air are poor conductors.

- Long Stem
- Conduction of heat is minimized
- Air is also a poor conductor.
- Hand in pizza oven does not burn unless you touch metal!



# Snow is a poor conductor of thermal energy.



- Snowflakes trap air.
- Provides insulation.
- Blanket of snow insulates ground.
- Igloo doesn't provide thermal energy, it slows down the loss of energy.



#### Which home has more insulation in the attic?

#### Convection

- is the transfer of heat through the flow of liquids or gases
- The material itself moves from one place to another.
- Examples:
  - Hot air rises through a chimney.
  - House heating

#### **Convection Currents**

Convection currents
 in a gas

Convection currents
 in a liquid



#### **Convection Ovens**

- Ovens with a fan inside.
- Cooking is sped up by the circulation of heated air.



GE Profile™ wall ovens provide excellent convection heat capability. Roasts are beautifully browned, yet tender and juicy inside. Cookies are baked to golden perfection. And meats are broiled to your liking.

# Try this.

- Blow on hand with mouth open wide.
- Try again with smaller opening.
- What do you notice? Why?



## Cooling by Expansion



- As gas expands, energy is spread out over greater area
- Therefore, it cools.

#### Radiation

- Radiation is heat transfer by the emission of electromagnetic waves which carry energy away from the emitting object.
- For ordinary temperatures (less than red hot"), the radiation is in the infrared region of the electromagnetic spectrum.

#### Types of Radiation



## Infrared Photography



#### Energy and Change of Phase

