Newton's Laws

Physical Science 115

Newton's 1st Law of Motion

- "The law of inertia"
- Every object retains its state of rest or its state of uniform straight-line motion unless acted upon by an unbalanced force.
- Inertia resists any changes in motion.

Inertia

- The property of objects to maintain their state of motion.
- Resistance to changes in motion.
- "sluggishness"
- "laziness"

Objects in motion stay in motion

When you slam on the breaks, you fly forward. Is there a force pulling you forward?

More Examples of Inertia (objects at rest stay at rest)

Why is it that a slow continuous increase in the downward force breaks the string above the massive ball, but a sudden increase breaks the lower string?

Why will the coin drop into the glass when a force accelerates the card?

Weight

- the force exerted on a body by the pull of the earth or some other large body.

One Kilogram Weighs 9.8 Newtons

$$
9.8 \mathrm{~N}
$$

$$
\begin{aligned}
& 1 \mathrm{~kg}=9.8 \mathrm{~N} \\
& 1 \mathrm{~kg}=2.2 \mathrm{lbs} \\
& 1 \mathrm{lb}=4.5 \mathrm{~N}
\end{aligned}
$$

How do we define weight?

Example: How much does a 10 kg object weight?
Answer: 98 Newtons

Force of hand accelerates the brick

How is force related to acceleration?

Twice as much force produces twice as much acceleration

If a heavy object like a kilogram weight and a paperclip is dropped from the same height, they will both reach the ground at the same time.
Since the kilogram weight is heavier than the paperclip , this means that there is more gravitational force acting on the heavier object.
Why doesn't the heavy weight accelerate to the ground before the paperclip does?

- Answer: Because of the mass.
- Acceleration is inversely proportional to mass.
- More mass => less acceleration.

The same force accelerates 2 bricks $1 / 2$ as much

Twice the force acts on twice the mass to yield the same acceleration, $9.8 \mathrm{~m} / \mathrm{s}^{2}$.

Newton's Second Law

a = Fnet/mass

Newton's 2nd Law of Motion

- Forces cause accelerations
- Units = Newtons (N)
- Proportionality constant = mass
- More force, more

$$
F_{n e t}=m a
$$ acceleration

- More mass, less acceleration

Newton's 3rd Law of Motion

- Source of force - other objects
- 3rd law - relates forces between objects
- "Whenever two objects interact, the force exerted on one object is equal in size and opposite in direction to the force exerted on the other object."

© Keith Jennings, Arizona State University Media Relations Office

Newton's Third Law

- Whenever one object exerts a force on a second object, the second object exerts an equal and opposite force on the first.
- Action/Reaction forces ALWAYS comes in pairs.

3rd Law: Action/Reaction

Hammer pushes on stake. Stake pushes on hammer.

The hammer acts, the stake re-acts.

Action-Reaction Pair Examples

Action: tire pushes on road Reaction: road pushes on tire

Action: rocket pushes on gas
Reaction: gas pushes on rocket

Action/Reaction Examples

Action: man pulls on spring

Reaction: spring pulls on man

- Action: Earth pulls on ball

Reaction: ball pulls on Earth

Check Question

1. We know that the earth pulls on the moon. Does it follow that the moon also pulls on the earth? With the same magnitude?
2. A unfortunate bug has a head-on collision with your windshield while you are driving on the freeway. Which experiences more force? Your car, the bug, or both the same?

Tug-of-War

Who is pulling harder on the rope, Arnold Strongman or Suzy Small?

Who wins a tug-of-war, those who pull harder on the rope, or those who push harder against the floor?

