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 Experiment 11 
 
 Moment of Inertia 
 
 
 A rigid body composed of concentric disks is constrained to rotate about its axis of 
symmetry.  The moment of inertia is found by two methods and the results are compared.  In the 
first method, the moment of inertia is determined theoretically by applying the formula for the 
moment of inertia of a single disk to each of four disks and adding the results.  In the second 
method, the moment of inertia is determined experimentally by measuring the acceleration produced 
by a constant torque on the body. 
 
 The experimental determination of the moment of inertia is only valid if friction is 
negligible.  In Part III of the experiment, an estimate of the angular acceleration due to friction is 
obtained.  The validity of the above approximation is the examined. 
 
Theory, Part I 
  
 Consider a pulley made of four disks.  
 
 The moment of inertia of a homogeneous 
 disk about the axis of symmetry is 

 
where M is the mass of the disk and R is the radius.  The moment of inertia of a rigid system of 
concentric disks is then 

where the sum extends over all disks, each of which has mass Mi and radius Ri.  If the mass density, 
ρ, is uniform (i.e., constant throughout the body), the mass of each disk is given by 

where Vi is the volume of each disk and wi is the width.  Substituting this into (1), the moment of 
inertia of each disk is then 

and the total theoretical moment of inertia of the rotating body is 
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If the density together with the width and the radius of each disk are known, then the moment of 
inertia of the body can be computed.  The moment of inertia determined in this manner will be 
referred to as the theoretical value (Itheo). 
 
Theory, Part II 
 
 The experimental value of the 
moment of inertia can also be found by 
exerting a constant torque on the body.  A 
mass, m, is attached to a string which is 
wrapped around the body at some radius, R. 
 (Refer to Figure 2.)  R will be one of the 
disk radii, Ri.  If m is released from rest and 
falls a distance, d, during a time, t, the 
acceleration of m is given by 

Once the value of the acceleration is 
known, the moment of inertia is determined 
by 

 
assuming that friction in the supports is negligible. 
 

Theory, Part III 
 
 A rough measure of friction in the supports can easily be found.  Suppose the body (without 
the mass) is initially spun and N revolutions occur during the time TN  required for the body to come 
to rest.  Assuming the angular acceleration due to the resistance is constant, its magnitude is then 
given by 

This should be approximately true for the apparatus.  The expression (6) represents, in reality, the 
average value of the angular acceleration due to friction. 
 The magnitude of the average resistive torque due to friction in the supports is τf =Iαf.  
Including this torque in the derivation of the experimental moment of inertia (5), the corrected result 
is  
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    Figure 2.  Experimental determination of 
         moment of inertia. 
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This is assuming the resistive torque is constant.    In the experimental determination of the moment 
of inertia, when m is attached to the body, the resistive torque will have an additional contribution 
that is proportional to the tension of the string, which connects m to the body.  This contribution is 
negligible, however, if m<<Mtotal.)  According to (7) the validity of (5) rests upon the degree to 
which the following is true: 

Apparatus 
 
 o  mounted rotational body     
 o  vernier caliper    o  100-gram slotted weight 
 o  string     o  two meter stick 
 o  masking tape    o  stopwatch 
 
 The pulley is made of aluminum and consists of four concentric disks.  (Refer to Figure 2.)  
The density of the material is given by the total mass divided by the total volume.  The result is 

 The string attached to the mass m supplies a force that can be applied at any of the different 
radii of the pulley.  The string can be attached to the cylinder with some masking tape. 
 
  
Procedure, Parts I & II 
 
 1) Using the vernier caliper, measure and record the width, w, and diameter, d, of each 

disk.  Obtain 3 or 4 significant figures.  Write down the uncertainties for each 
measurement. Number the disks according to Figure 2. 

 
 2) Cut a piece of string long enough to allow the weight hanger to reach the floor.  Attach a 

100-gram weight to the string.  This is mass m. 
 
 3) Attach the other end of the string to the rim of one of the disks.  Ensure that the string 

will not slip.  Rotate the body, allowing the string to wrap around the disk without 
overlapping.  Using the two-meter stick, position the bottom of the weight so that its 
vertical distance d from the floor is approximately 1 meter 

 
 4) Steady the weight.  Release the body and measure the time, t, required for the weight 

hanger to strike the floor.  The timing must be performed very carefully; start the timer 

 

 ,

/Ra 
 + 1

1 1 - 
a
g R m = I

f

2

⎟
⎠

⎞
⎜
⎝

⎛
⎟
⎠

⎞
⎜
⎝

⎛
α

exp

 (7) 

 
. 1 < < 

/Ra 
fα

 (8) 

 . m   kg70.2 -3• 10 x  = 3ρ  (10) 



 

 
 
 4 

exactly when the body is released and stop it just when the body strikes the floor.  Do 
not permit the string to become tangled in the supports.  Perform two more trials using 
different students as timers and obtain an average and uncertainty for this measurement. 

 
 5) Repeat the procedure on another radius.  Your data will consist of three “time-to-fall” 

measurements for each different radius.  Note that the values of m and d are to remain 
constant. 

 
 
Procedure, Part III (optional) 
 
 1) Remove the string from the body, and place a small piece of tape on the rim of the 

largest disk.  The tape will serve as a reference mark to be used in counting revolutions. 
 
 2) Spin the body as fast as possible while still being able to count the revolutions.  The 

angular velocity will then be comparable to a typical final angular velocity in Part I. 
 
 3) Start the time and count the number, N, of revolutions during the time, TN, required for 

the body to come to rest.  Record the values of N and TN.  The data need only be 
approximate and only one trial will suffice. 

 
 
Analysis, Part I 
 
 Construct a data table that contains the width, diameter, radius, and moment of inertia of 
each disk, using (2) and (10).  Use SI (MKS) units.  Include the value of ρ in the title of the table.  
Number the disks according to Figure 2.  Determine and clearly display the value of the total 
theoretical moment of inertia, Itheo, to three significant figures. 
 
Analysis, Part II 
 
 For each radius, R, at which a force was applied, compute the average value of the time-of-
fall, t.  Using (4), compute the acceleration for each value of R.  Then, using (5), compute I for each 
set of values of R and a.  Use SI units.  Construct a data table that contains the values of R, t, A, and 
Iexp.  (This table should be separate from the table for the theoretical moment of inertia.)  Include 
both the measured and averaged times-of-fall.  Since the values of m and d are constant, they should 
be included in the title of the table.  Determine and display the values obtained for Iexp. 
 
 Also determine the uncertainties for the theoretical value and for the experimental values. 
For the experimental results use the fractional uncertainty formula.  

 We assume here that the uncertainty in the mass m is negligible. 
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Results 
 
  Report in a table of results the experimental and theoretical values of the moment of inertia, 
their uncertainties and the percentage difference between the theoretical and each experimental 
value. Find the percentage difference using the equation: 

Include a one-dimensional error bar comparing the single theoretical value with the experimentally 
determined values.  
 
 
Analysis, Part III (optional) 
 
 Using (6), compute and display the approximate value of the angular acceleration, αf, due to 
friction.  Express the result in units of rad/sec2.  For each value of R used, compute the angular 
acceleration, a/R, and the corrected Iexp values. Include these values in the results table and the error 
bar graph in Part I. 
 
 
Questions and Conclusion 
 
 1) In the theory section of your lab report, draw free body diagrams for m and for the 

pulley, and derive (4) and (5). Explain your steps. 
 
 2) In the theory section of your lab report, derive (6) and (7). Explain your steps.  
 

3) In the experimental method, explain why the acceleration is greater when you attach the 
string to a larger radius. 

  
4) Your two experimental results should each give the same value for the entire “I” of the 

object, and not just the “Ii” of the disk to which the string was attached. Explain. 
  
5) Was the experiment a success? (Did the theoretical and experimental values agree to the 

degree of uncertainty). Were there systematic errors that could explain the differences? 
 
6) Did the two different experimental results (derived from wrapping the string around 

different radii) agree with each other? Can you think of any systematic errors that could 
explain the differences? 

 
7) Does the friction correction improve the agreement between theoretical and 

experimental values? Explain. 
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