Conceptual Physics $11^{\text {th }}$ Edition Paug.t=wit
 Chapter 3: LINEAR MOTION

This lecture will help you understand:

- Motion Is Relative
- Speed : Average and Instantaneous
- Velocity
- Acceleration
- Free Fall

Motion Is Relative

Motion of objects is always described as relative to something else. For example:

- You walk on the road relative to Earth, but Earth is moving relative to the Sun.
- So your motion relative to the Sun is different
 from your motion relative to Earth.

Speed

- Defined as the distance covered per amount of travel time.
- Units are meters per second.
- In equation form:

Speed $=\frac{\text { distance }}{\text { time }}$

Example: A girl runs 4 meters in 2 sec . Her speed is $2 \mathrm{~m} / \mathrm{s}$.

Average Speed

- The entire distance covered divided by the total travel time
- Doesn't indicate various instantaneous speeds along the way.
- In equation form:

Average speed $=\underline{\text { total distance covered }}$ time interval

Example: Drive a distance of 200 km in 2 h and your average speed is $100 \mathrm{~km} / \mathrm{h}$.

Average Speed CHECK YOUR NEIGHBOR

The average speed of driving 30 km in 1 hour is the same as the average speed of driving
A. 30 km in $1 / 2$ hour.
C. 30 km in 2 hours.
D. 60 km in $1 / 2$ hour.
G. 60 km in 2 hours.

Average Speed CHECK YOUR ANSWER

The average speed of driving 30 km in 1 hour is the same as the average speed of driving
A. 30 km in $1 / 2$ hour.
C. 30 km in 2 hours.
D. 60 km in $1 / 2$ hour.
G. 60 km in 2 hours.

Explanation:
Average speed $=$ total distance / time
So, average speed $=30 \mathrm{~km} / 1 \mathrm{~h}=30 \mathrm{~km} / \mathrm{h}$.

Now, if we drive 60 km in 2 hours:
Average speed $=60 \mathrm{~km} / 2 \mathrm{~h}=30 \mathrm{~km} / \mathrm{h}$

Instantaneous Speed

Instantaneous speed is the speed at any instant.
Example:

- When you ride in your car, you may speed up and slow down.
- Your instantaneous speed is given by your speedometer.

Velocity

- A description of
- the instantaneous speed of the object
- what direction the object is moving
- Velocity is a vector quantity. It has
- magnitude: instantaneous speed
- direction: direction of object's motion

Speed and Velocity

- Constant speed is steady speed, neither speeding up nor slowing down.
- Constant velocity is
- constant speed and
- constant direction (straight-line path with no acceleration).

Motion is relative to Earth, unless otherwise stated.

Acceleration

Formulated by Galileo based on his experiments with inclined planes.

Rate at which velocity changes over time

Slope upward-
 Speed decreases

No slope-
Does speed change?

Acceleration

Involves a

- change in speed, or
- change in direction, or
- both.

Example: Car making a turn

Acceleration

In equation form:

Acceleration $=\frac{\text { change in velocity }}{\text { time interval }}$

Unit of acceleration is unit of velocity / unit of time.
Example:

- You car's speed right now is $40 \mathrm{~km} / \mathrm{h}$.
- Your car's speed 5 s later is $45 \mathrm{~km} / \mathrm{h}$.
- Your car's change in speed is $45-40=5 \mathrm{~km} / \mathrm{h}$.
- Your car's acceleration is $5 \mathrm{~km} / \mathrm{h} / 5 \mathrm{~s}=1 \mathrm{~km} / \mathrm{h} / \mathrm{s}$.

CHECK YOUR NEIGHBOR

An automobile is accelerating when it is
A. slowing down to a stop.
C. rounding a curve at a steady speed.
D. Both of the above.
G. Neither of the above.

Acceleration CHECK YOUR ANSWER

An automobile is accelerating when it is
A. slowing down to a stop.
C. rounding a curve at a steady speed.
D. Both of the above.
G. Neither of the above.

Explanation:

- Change in speed (increase or decrease) is acceleration, so slowing is acceleration.
- Change in direction is acceleration (even if speed stays the same), so rounding a curve is acceleration.

CHECK YOUR NEIGHBOR

Acceleration and velocity are actually

A. the same.
C. rates but for different quantities.
D. the same when direction is not a factor.
G. the same when an object is freely falling.

Acceleration CHECK YOUR ANSWER

Acceleration and velocity are actually

A. the same.
C. rates but for different quantities.
D. the same when direction is not a factor.
G. the same when an object is freely falling.

Explanation:

- Velocity is the rate at which distance changes over time,
- Acceleration is the rate at which velocity changes over time.

Acceleration

Galileo increased the inclination of inclined planes.

- Steeper inclines gave greater accelerations.
- When the incline was vertical, acceleration was max, same as that of the falling object.
- When air resistance was negligible, all objects fell with the same unchanging acceleration.

Free Fall

Falling under the influence of gravity only - with no air resistance

- Freely falling objects on Earth accelerate at the rate of $10 \mathrm{~m} / \mathrm{s} / \mathrm{s}$, i.e., $10 \mathrm{~m} / \mathrm{s}^{2}$ (more precisely, $9.8 \mathrm{~m} / \mathrm{s}^{2}$).

Free Fall—How Fast?

The velocity acquired by an object starting from rest is

Velocity $=$ acceleration x time
So, under free fall, when acceleration is $10 \mathrm{~m} / \mathrm{s}^{2}$, the speed is

- $10 \mathrm{~m} / \mathrm{s}$ after 1 s .
- $20 \mathrm{~m} / \mathrm{s}$ after 2 s .
- $30 \mathrm{~m} / \mathrm{s}$ after 3 s .

And so on.

Free Fall—How Fast? CHECK YOUR NEIGHBOR

A free-falling object has a speed of $30 \mathrm{~m} / \mathrm{s}$ at one instant. Exactly 1 s later its speed will be
A. the same.
C. $35 \mathrm{~m} / \mathrm{s}$.
D. more than $35 \mathrm{~m} / \mathrm{s}$.
G. $60 \mathrm{~m} / \mathrm{s}$.

Free Fall—How Fast? CHECK YOUR ANSWER

A free-falling object has a speed of $30 \mathrm{~m} / \mathrm{s}$ at one instant. Exactly 1 s later its speed will be
A. the same.
C. $35 \mathrm{~m} / \mathrm{s}$.
D. more than $35 \mathrm{~m} / \mathrm{s}$.
G. $60 \mathrm{~m} / \mathrm{s}$.

Explanation:
One second later its speed will be $40 \mathrm{~m} / \mathrm{s}$, which is more than $35 \mathrm{~m} / \mathrm{s}$.

Free Fall—How Far?

The distance covered by an accelerating object starting from rest is

Distance $=(1 / 2) \times$ acceleration \times time \times time
So, under free fall, when acceleration is $10 \mathrm{~m} / \mathrm{s}^{2}$, the distance is

- $5 \mathrm{~m} / \mathrm{s}$ after 1 s .
- $20 \mathrm{~m} / \mathrm{s}$ after 2 s.
- $45 \mathrm{~m} / \mathrm{s}$ after 3 s .

And so on.

Free Fall—How Far? CHECK YOUR NEIGHBOR

What is the distance covered of a freely falling object starting from rest after 4 s?
A. 4 m
C. 16 m
D. 40 m
G. 80 m

Free Fall—How Far? CHECK YOUR ANSWER

What is the distance covered of a freely falling object starting from rest after 4 s?
A. 4 m
C. 16 m
D. 40 m
G. 80 m

Explanation:
Distance $=(1 / 2) \times$ acceleration x time x time
So: \quad Distance $=(1 / 2) \times 10 \mathrm{~m} / \mathrm{s}^{2} \times 4 \mathrm{~s} \times 4 \mathrm{~s}$
So: \quad Distance $=80 \mathrm{~m}$

